Telegram Group & Telegram Channel
🖥 Хитрая задача на Python для продвинутых: словарь, который работает как список

Представь структуру данных, которая:
• работает как dict — доступ по ключу
• работает как list — доступ по индексу
• сохраняет порядок вставки
• поддерживает .index(key) и .key_at(i)

📌 Задача: Реализуй класс IndexedDict, который делает всё это.

🔍 Пример использования:


d = IndexedDict()
d["a"] = 10
d["b"] = 20
d["c"] = 30

print(d["a"]) # 10
print(d[0]) # 10
print(d[1]) # 20
print(d.key_at(1)) # "b"
print(d.index("c")) # 2

for k in d:
print(k, d[k]) # перебор по ключам


⚠️ Подвох:

• Просто наследовать dict не получится — d[0] будет интерпретироваться как ключ, а не индекс
• Придётся реализовать двойную логику доступа вручную
• Нужно корректно поддержать __iter__, __getitem__, __len__ и др.

Решение:

```python
from collections.abc (collections.abc) import MutableMapping

class IndexedDict(MutableMapping):
def __init__(self):
self._data = {}
self._keys = []

def __getitem__(self, key):
if isinstance(key, int):
real_key = self._keys[key]
return self._data[real_key]
return self._data[key]

def __setitem__(self, key, value):
if key not in self._data:
self._keys.append(key)
self._data[key] = value

def __delitem__(self, key):
if key in self._data:
self._keys.remove(key)
del self._data[key]

def __iter__(self):
return iter(self._keys)

def __len__(self):
return len(self._data)

def index(self, key):
return self._keys.index(key)

def key_at(self, idx):
return self._keys[idx]
```

📈 Зачем это нужно:

• Отличная тренировка на переопределение магических методов
• Часто встречается в фреймворках (Pandas, SQLAlchemy)
• Тестирует знание ABC-классов (`collections.abc.MutableMapping`)
• Полезно для построения кастомных структур данных

Хочешь версию с `__contains__`, `__reversed__`, типизацией и сериализацией — пиши 💬



@Python_Community_ru



tg-me.com/Python_Community_ru/2626
Create:
Last Update:

🖥 Хитрая задача на Python для продвинутых: словарь, который работает как список

Представь структуру данных, которая:
• работает как dict — доступ по ключу
• работает как list — доступ по индексу
• сохраняет порядок вставки
• поддерживает .index(key) и .key_at(i)

📌 Задача: Реализуй класс IndexedDict, который делает всё это.

🔍 Пример использования:


d = IndexedDict()
d["a"] = 10
d["b"] = 20
d["c"] = 30

print(d["a"]) # 10
print(d[0]) # 10
print(d[1]) # 20
print(d.key_at(1)) # "b"
print(d.index("c")) # 2

for k in d:
print(k, d[k]) # перебор по ключам


⚠️ Подвох:

• Просто наследовать dict не получится — d[0] будет интерпретироваться как ключ, а не индекс
• Придётся реализовать двойную логику доступа вручную
• Нужно корректно поддержать __iter__, __getitem__, __len__ и др.

Решение:

```python
from collections.abc (collections.abc) import MutableMapping

class IndexedDict(MutableMapping):
def __init__(self):
self._data = {}
self._keys = []

def __getitem__(self, key):
if isinstance(key, int):
real_key = self._keys[key]
return self._data[real_key]
return self._data[key]

def __setitem__(self, key, value):
if key not in self._data:
self._keys.append(key)
self._data[key] = value

def __delitem__(self, key):
if key in self._data:
self._keys.remove(key)
del self._data[key]

def __iter__(self):
return iter(self._keys)

def __len__(self):
return len(self._data)

def index(self, key):
return self._keys.index(key)

def key_at(self, idx):
return self._keys[idx]
```

📈 Зачем это нужно:

• Отличная тренировка на переопределение магических методов
• Часто встречается в фреймворках (Pandas, SQLAlchemy)
• Тестирует знание ABC-классов (`collections.abc.MutableMapping`)
• Полезно для построения кастомных структур данных

Хочешь версию с `__contains__`, `__reversed__`, типизацией и сериализацией — пиши 💬



@Python_Community_ru

BY Python Community


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/Python_Community_ru/2626

View MORE
Open in Telegram


Python Community Telegram | DID YOU KNOW?

Date: |

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Python Community from ms


Telegram Python Community
FROM USA